Из чего состоят матрицы на жк мониторе. Какие бывают матрицы мониторов

Социальные сети 28.02.2024
Социальные сети

*VA (Vertical Alignment) Первая матрица этого типа, которая так и называлась "VA" была разработана компанией Fujitsu. В дальнейшем эти матрицы усовершенствовались и производились целым рядом компаний. Они характеризуются как некий компромисс по большинству характеристик (включая стоимость и энергопотребление) между TN и IPS, также, как и последние оставляют неисправный пиксель или сабпиксель в погашенном состоянии. Главным их достоинством является высокая контрастность в сочетании с хорошей цветопередачей (особенно у последних вариантов), но в отличие от IPS имеют отрицательную особенность, выражающуюся в пропадании деталей в тенях при перпендикулярном взгляде и зависимость цветового баланса изображения от угла зрения.
  • MVA - Multi-domain Vertical Alignment. Первый широко распространившийся тип матриц из этого семейства
  • PVA(Patterned Vertical Alignment) - развите *VA технологии, предложенное фирмой , характеризуется в первую очередь увеличенной контрастностью изображения.
  • S - PVA (Super- PVA) от ,
  • S - MVA (Super MVA) от Chi Mei Optoelectronics,
  • P-MVA, A-MVA (Advanced MVA) от AU Optronics. Дальнейшие развитие *VA технологии от различных производителей. Улучшения свелись в основном к уменьшению времени отклика путём манипуляций с подачей более высокого напряжения в начальной стадии изменения ориентации кристаллов сабпикселя (эту технологию в разных источниках называют либо «Overdrive» либо «Компенсация времени отклика») и окончательному переходу к полноценным 8-битам, кодирующих цвет в каждом канале.
Существуют ещё несколько типов LCD-матриц, которые не применяются в настоящее время в :
  • IPS Pro (разработанная компанией IPS Alpha) - применяется в LCD-телевизорах Panasonic.
  • AFFS - компактные матрицы производства Samsung для специальных применений.
  • ASV - матрицы, выпускаемые корпорацией Sharp для LCD-телевизоров.
О технических особенностях разных типов матриц можно почитать вот в .

Для работы c офисными приложениями, вам прекрасно подойдёт любой LCD-монитор, так что можете смело выбирать исходя из дизайна, цены устройства и иных соображений. Единственное замечание – если покупается монитор с большой диагональю – 20” и выше, то желательно, чтобы он был подключен по DVI интерфейсу, потому что при работе с текстами и таблицами желательна максимально возможная чёткость изображения. (При покупке дешёвого монитора для игр и просмотра кино наличие цифрового входа не столь критично.)

Для работы с растровой графикой (обработка фотографий и т.п.) , а также видеомонтажа, и любых других приложений, где критична достоверная цветопередача, вам следует выбирать модели с матрицей семейства IPS или, что несколько хуже в данном случае, *VA.

Во многих ситуациях монитор с IPS-матрицей может оказаться ещё и очень хорошим выбором для дома, поскольку единственным существенным недостатком современных такого типа является относительно высокая цена. А время отклика хоть и превосходит таковое у лучших TN-мониторов, но не накладывает каких либо ограничений на применение таких мониторов в играх.

Вероятно, оптимальным вариантом в качестве универсального домашнего монитора для многих пользователей может быть вариант с современной *VA матрицей, поскольку она обеспечивает куда более комфортный просмотр кино и фотографий, нежели более дешёвые TN-варианты, а скоростных характеристик будет достаточно для большинства пользователей кроме самых отъявленных геймеров.

В случае же, если монитор покупается как раз в основном для 3D-игр (особенно шутеры и симуляторы), адекватным выбором может стать с TN матрицей, при использовании в играх основные недостатки этой технологии не так заметны. К тому же эти мониторы самые дешёвые. (Если сравнивать модели с одинаковой диагональю).

Также современные мониторы отличаются соотношением сторон экрана - обычные, с соотношением сторон 4:3 или 5:4 и широкоформатные, c соотношением сторон 16:10 или 16:9.

Поскольку бинокулярное поле зрения человека имеет соотношение сторон куда более близкое к таковым у , то при прочих равных условиях работать за ними теоретически комфортнее и они постепенно вытесняют с «обычным» соотношением сторон. Некоторые проблемы могут быть только со старыми играми, не поддерживающими видеорежимы с соответствующим соотношением сторон, но практика показывает, что к «сплюснутому» изображению в таких случаях адаптация происходит очень быстро и дискомфорта этот факт не вызывает. Так что рекомендуем выбирать соотношение сторон монитора исходя из собственных предпочтений, хотя «для дома» широкоформатный монитор однозначно удобнее.

Также рекомендуем полагаться на собственные субъективные впечатления при выборе типа покрытия у монитора – «глянцевое» покрытие делает изображение визуально контрастнее (особенно на дешёвых матрицах), но куда больше и неприятнее бликует, в отличие от матового.

Напоминаем, что очень часто завышенная может быть обусловлена не только применением в нём дорогой и качественной матрицы, но и особенностями, не относящимися собственно к исполнению монитором его основной функции- т.е. наличием специфической периферии (колонки, сабвуферы, web-камеры), дополнительных входов (цифровых, например - второго DVI или HDMI, и аналоговых, вроде S-Video или компонентного входа) или уникальных дизайнерских решений.

Наглядное сравнение влияния углов обзора (фотографии сделаны под углом в 50°) на характеристики изображения у мониторов с различными типами матриц:



     Ориентировочная таблица сравнительных пользовательских характеристик в зависимости от использованного типа матрицы:

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.

Жидкие кристаллы были открыты еще в 1888 году. Но практическое применение они нашли только тридцать лет назад. «Жидкокристаллическим» называют переходное состояние вещества, при котором оно приобретает текучесть, но при этом не теряет свою кристаллическую структуру. Наибольший практический интерес, как оказалось, представляют оптические свойства жидких кристаллов. Благодаря сочетанию полужидкого состояния и кристаллической структуры можно легко менять способность пропускать свет.

Типы ЖК-матриц

Первым массовым продуктом с использованием жидких кристаллов стали электронные часы. Монохромный дисплей состоял, как известно, из отдельных полей, заполненных жидкими кристаллами. При подаче напряжения, с помощью которого кристаллы упорядочиваются, нужные поля препятствуют прохождению света и выглядят черными на светлом фоне. Цветные дисплеи появились, когда размеры ячейки удалось значительно уменьшить и снабдить каждую цветным фильтром. Кроме того, в современных ЖК мониторах используется задняя подсветка.

Для подсветки используется обычно 4 или 6 ламп и зеркала для более обеспечения равномерности. В основе работы ЖК-панели - поляризация света. На пути светового потока две поляризационные пленки с перпендикулярными направлениями поляризации. То есть в сумме эти две пленки задерживают весь свет. Расположенные между пленками жидкие кристаллы разворачивают часть потока, поляризованного первой пленкой, и таким образом регулируют свечение экрана.

Схема субпикселя ЖК-матрицы.
Каждый пиксель составляют синий, красный и зеленый субпиксели

Слой жидкокристаллического вещества «зажат» между двумя направляющими пленками с мельчайшими засечками, по направлению которых и выстраиваются кристаллы. Изменить направление ориентации кристаллов можно, например, с помощью электрического импульса, как это и делается в матрицах ЖК-мониторов. В современных матрицах каждая ячейка имеет собственный транзистор, резистор и конденсатор. Собственно в цветных матрицах каждый пиксель представляет собой три ячейки: красную, зеленую и синюю.

Матрица TN. Самая старая и самая распространенная

Самый старый тип матриц, из тех, которые сейчас применяются - TN. Название технологии расшифровывается как Twisted Nematic. Нематические жидкокристаллические субстанции состоят из продолговатых кристаллов с пространственной ориентацией, но без жесткой структуры. Такое вещество легко поддается внешним воздействиям.

В матрицах TN кристаллы выстроены параллельно плоскости экрана, а верхний и нижний слой кристаллов повернуты перпендикулярно относительно друг друга. Все остальные «скручены» по спирали. Таким образом, весь пропущенный свет так же скручивается и беспрепятственно проходит через внешнюю поляризующую пленку. Так что в выключенном состоянии ячейка TN матрицы светится, а при подаче напряжения кристаллы постепенно проворачиваются. Чем выше напряжение, тем больше кристаллов разворачивается, и тем меньше проходит света. Как только все кристаллы развернутся параллельно световому потоку, ячейка «закрывается». Но для TN матриц добиться идеально черного цвета очень трудно.

Кристаллы в матрице TN "скручены" по спирали (1).
При подаче напряжения они начинают поворачиваться (2).
Когда все кристаллы перпендикулярны поверхности (3), свет не проходит.

Главная проблема TN матриц в несогласованности поворота кристаллов: одни уже развернуты полностью, другие только начали поворачиваться. Из-за этого происходит рассеивание светового потока и, в конечном счете, картинка под разными углами выглядит не одинаково. Горизонтальные углы обзора современных матриц можно считать приемлемыми, но при повороте по вертикали даже в небольших пределах, искажения существенные. Цветопередача матриц TN далека от идеальной - они в принципе не могут выводить полную палитру цветов, компенсирую недостаток оттенков с помощью хитрых алгоритмов. Такие алгоритмы с частотой не заметной глазу воспроизводят в ячейке попеременно оттенки, ближайшие к тому, который воспроизвести не удается. Зато технология TN обеспечивает максимальную скорость срабатывания ячейки, минимальное энергопотребление и максимально дешева. Эти два обстоятельства и делают самую старую технологию самой популярной и самой распространенной.

IPS. Идеально для фото и графики. Но дорого

Второй по времени разработки стала технология IPS (In Plane Switch). Такие матрицы производят заводы Hitachi, LG.Philips. NEC производит матрицы сделанные по сходной технологии, но с собственной аббревиатурой SFT (Super Fine TFT).

Как следует из названия технологии, все кристаллы расположены постоянно параллельно плоскости панели и поворачиваются одновременно. Для этого пришлось расположить на нижней стороне каждой ячейки по два электрода. В выключенном состоянии ячейка черная, так что если она «умерла», на экране будет черная точка. А не постоянно светящаяся, как у TN.


В матрице IPS кристаллы всегда параллельны поверхности экрана

IPS технология обеспечивает наилучшую цветопередачу и максимальные углы обзора. Из существенных недостатков - болшее, чем у TN , время отклика, более заметная межпиксельная сетка и высокая цена. Улучшенные матрицы получили название S -IPS и SA -SFT (соответственно у LG .Philips и NEC ). Они обеспечивают уже приемлемое время отклика на уровне 25 мс, а новейшие и того меньше - 16 мс. Благодаря хорошей цветопередаче и углам обзора IPS матрицы стали стандартом для графических профессиональных мониторов.

MVA/PVA. Разумный компромисс?

Как компромисс между TN и IPS можно рассматривать разработанную Fujitsu технологию VA (Vertical Alignment). В матрицах VA кристаллы в выключенном состоянии расположены перпендикулярно плоскости экрана. Соответственно черный цвет обеспечивается максимально чистый и глубокий. Но при повороте матрицы относительно направления взгляда, кристаллы будут видны не одинаково. Для решения проблемы применяется мультидоменная структура. Разработанная Fujitsu технология Multi-Domain Vertical Alignment (MVA) предусматривает выступы на обкладках, которые определяют направление поворота кристаллов. Если два поддомена поворачивается в противоположных направлениях, то при взгляде сбоку один из них будет темнее, а другой светлее, таким образом для человеческого глаза отклонения взаимно компенсируются. В матрицах PVA , разработанных Samsung нет выступов, и в выключенном состоянии кристаллы строго вертикальны. Для того, чтобы кристаллы соседних субдоменов поворачивались в противоположных направлениях, нижние электроды сдвинуты относительно верхних.


В матрицах VA типа в выключенном состоянии кристаллы перпендикулярны поверхности экрана

Для уменьшения времени отклика в матрицах Premium MVA и S -PVA применяется система динамического повышения напряжения для отдельных участков матрицы, которую обычно называют Overdrive . Цветопередача матриц PMVA и SPVA почти так же хороша как и у IPS , время отклика немного уступает TN , углы обзора максимально широкие, черный цвет наилучший, яркость и контраст максимально возможные среди всех существующих технологий. Однако даже при небольшом отклонении направления взгляда от перпендикуляра, даже на 5–10 градусов можно заметить искажения в полутонах. Для большинства это останется незамеченным, но профессиональные фотографы продолжают за это недолюбливать технологии VA .

Что выбрать?

Для домашнего использования и для работы в офисе часто цена является решающим аргументом, и из-за этого мониторы с матрицей TN пользуются максимальной популярностью. Они обеспечивают приемлемое качество изображения при минимальном времени отклика, что является критически важным параметром для любителей динамичных игр. PVA и MVA матрицы не столь широко распространены из-за более высокой цены. Они обеспечивают очень высокий контраст (особенно PVA ), большой запас по яркости и хорошую цветопередачу. В качестве основы для домашнего мультимедийного центра (замена телевизора), это лучший выбор. Матрицы IPS все реже устанавливаются в мониторы с диагональю до 20 дюймов. По качеству лучшие модели S -IPS и SA -SFT не уступают CRT мониторам и все чаще применяются профессионалами в области фото, полиграфии и дизайна. Практические рекомендации по выбору монитора можно прочитать в статье «Выбираем ЖК-монитор. Что предпочесть фотографу, геймеру и домохозяйке?»

Немного помечтаем

Совсем недавно, т.е. лет 15 назад, вряд ли многие предполагали, что ЖК-мониторы смогут вытеснить кинескопные. Качество LCD было низким, а цена крайне высокой. Но и сейчас нельзя назвать технологию производства панелей на жидких кристаллах идеальной. Для улучшения цветопередачи, увеличения контрастности и обеспечения равномерности подсветки в профессиональном NEC Reference 21 применена диодная подсветка. Стоит этот монитор около $6000 и пока его можно считать скорее полиграфическим оборудованием, чем компьютерной перефирией. Но мы знаем множество примеров, когда профессиональные технологии "спускаются" к любителям.

Многие крупные компании (Sanyo, Samsung, Epson) разрабатывают экраны на основе OLED - органических кристаллов. Сами кристаллы испускают свет при подаче напряжения, эти экраны чрезвычайно экономичные, яркие и контрастные. Но пока применяются только в мелкой портативной технике из-за дороговизны и технических проблем, связанных с долговечностью, воспроизведением некоторых цветов. В совсем отдаленной перспективе могут появиться и абсолютно новые технологии, о которых сейчас слышали только специалисты, а экран можно будет свернуть в трубочку или наклеить на стену. А может быть и не будет мониторов в нашем привычном понимании? А может быть, все перейдут на проекторы? И в качестве экрана можно будет использовать практически любую поверхность. Заманчивая перспектива.

Представляет собой тонкое плоское устройство отображения, составленное из некоторого числа цветных или монохромных пикселей, расположенных перед источником света или зеркалом.

В чем преимущество ЖК-монитора? Его высоко ценят инженеры, потому что он потребляет незначительное количество электроэнергии, что делает его пригодным для использования в электронных устройствах, питающихся от батареек. Кроме того, он может иметь практически любую форму и размеры, мало нагревается и не выделяет вредного электромагнитного излучения.

Также он является одной из причин успеха портативных компьютеров - иначе они бы не были такими компактными. Некоторые из ранних моделей переносных ПК включали небольшой ЭЛТ-монитор и были довольно громоздкими. Впоследствии ЖК-дисплеи стали использоваться не только в ноутбуках, но и в телевизорах высокой четкости. Поскольку со временем технология и производство становятся более дешевыми, стоимость мониторов с плоским экраном или HD-телевизоров продолжала снижаться. В конечном итоге ЖК-панели полностью заменили традиционные электронно-лучевые трубки, так же, как транзисторы сменили вакуумные лампы.

Принцип работы ЖК-монитора

Пиксели дисплея состоят из ЖК-молекул, выстроенных между прозрачными электродами, а также из пары поляризационных фильтров с перпендикулярными друг другу осями полярностей. В отсутствие жидкого кристалла свет, проходя через один поляризатор, блокируется другим.

Поверхность электродов, контактирующих с веществом, находящимся в ЖК-фазе, обработана так, чтобы молекулы выстраивались в определенном направлении. Как правило, они покрываются тонким слоем полимера, направленного в одну сторону методом протирания его тканью (жидкие кристаллы выстраиваются в том же направлении).

Принцип работы ЖК-монитора следующий. До наложения электрического поля ЖК-молекулы выстроены согласно направлению выравнивания поверхностей. В наиболее распространенном типе ЖК-экрана - крученном нематическом - направления выстраивания поверхностей электродов перпендикулярны, благодаря чему молекулы образуют спиралевидную структуру, т. е. скручиваются. Так как свойством жидких кристаллов является разная скорость движения света с разной поляризацией, луч, который проходит через один поляризационный фильтр, вращается ЖК-спиралью так, что может пройти сквозь второй. При этом половина света поглощается в первом поляризаторе, но в остальном вся сборка прозрачна.

Когда на электроды подается напряжение, начинает действовать крутящий момент, который выравнивает молекулы скрученного нематического кристалла вдоль электрического поля и выпрямляет спиралевидную структуру. Этому препятствуют упругие силы, так как молекулы на поверхностях не свободны. Вращение поляризации уменьшается, и пиксель выглядит серым. Но благодаря свойству жидких кристаллов выравниваться при достаточно высокой разности потенциалов, проходящий сквозь них свет не вращается. В результате направление поляризации становится перпендикулярным второму фильтру, он полностью блокируется, и пиксель выглядит черным. Изменение напряжения между электродами по обе стороны ЖК-слоя каждого элемента изображения регулирует количество проходящего света и, соответственно, его яркость.

Скрученные нематические жидкие кристаллы помещаются между скрещенными поляризационными фильтрами для того, чтобы свет был максимально ярким без расхода электроэнергии, а получаемое при подаче напряжения затемнение - являлось равномерным. Возможен случай использования параллельных поляризационных фильтров. При этом темные и яркие состояния изменяются на противоположные. Однако в такой конфигурации черный не будет равномерным.

Вещество жидкого кристалла и выравнивающий слой содержат ионные соединения. Если длительное время действует электрическое поле определенной полярности, ионный материал притягивается поверхностями, ухудшая характеристики ЖК-монитора. Избежать этого можно, применяя либо переменный ток, либо изменяя полярность электрического поля во время обращения к устройству (реакция ЖК-слоя не зависит от полярности).

Мультиплексорный экран

Когда дисплей составлен из большого числа пикселей, управлять каждым из них напрямую невозможно, поскольку всем им понадобятся независимые электроды. Вместо этого монитор мультиплексируется. При этом электроды группируются и соединяются (как правило, по столбцам), и каждая группа питается отдельно. С другой стороны ячейки электроды также сгруппированы (как правило, по рядам) и подключены отдельно. Группы создаются таким образом, чтобы каждый пиксель обладал уникальной комбинацией источника и приемника. Электроника или программное обеспечение, управляющее ею, последовательно включает группы и управляет ими.

Важными факторами, которые следует учитывать при оценке ЖКД, являются разрешение, видимый размер, время отклика (скорость синхронизации), тип матрицы (пассивный или активный), угол обзора, поддержка цвета, коэффициент яркости и контрастности монитора, соотношение сторон и входные порты (например, DVI или VGA).

Цветные экраны

В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.

В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.

Пассивная матрица

Устройство ЖК-мониторов с небольшим количеством сегментов, например, используемых в карманных калькуляторах и цифровых часах, предусматривает для каждого элемента один электрический контакт. Внешняя выделенная схема обеспечивает электрический заряд, необходимый для управления каждым сегментом. При большом количестве экранных элементов такая структура становится слишком громоздкой.

Малые монохромные дисплеи, используемые, например, в старых ноутбуках, имеют структуру пассивной матрицы, в которой используется технология суперскрученных нематических элементов (STN) или двухслойная STN (DSTN), которая корректирует проблему смещения цвета. Каждая строка или столбец имеют одну электрическую цепь. Адресация каждого пикселя производится поочередно по адресу строки и столбца. Такой тип дисплея называют пассивной матрицей, поскольку состояние каждой ячейки должно сохраняться без электрического заряда. С ростом числа элементов (а также строк и столбцов) отображение становится все более сложным. Дисплеи с пассивной матрицей характеризуются слишком медленным откликом и плохой контрастностью.

Активные матричные технологии

В цветных экранах высокого разрешения, которыми оборудуются современные телевизоры и мониторы, применяется активная матрица. В ней к цветным и поляризационным фильтрам добавлен слой тонкопленочных транзисторов (TFT). При этом каждый пиксель управляется своим собственным выделенным полупроводниковым элементом. Транзистор обеспечивает доступ в каждом столбце только к одному пикселю. При активации строки к ней подключаются все столбцы, и на них подается напряжение. Затем строка деактивируется, и активируется следующая. При обновлении дисплея последовательно активируются все строки. Активно-матричные экраны значительно четче и ярче пассивных того же размера, и обычно отличаются более быстрым откликом, который обеспечивает гораздо лучшее качество изображения.

Скрученный нематик (TN)

TN-экраны содержат ЖК-элементы, которые для регулирования количества пропускаемого света в разной степени скручиваются и раскручиваются. Если напряжение на электроды ЖК-ячейки TN-матрицы не подается, то луч поляризуется таким образом, что может пройти сквозь нее. Жидкие кристаллы скручиваются пропорционально приложенной разнице потенциалов до 90°, изменяют поляризацию и блокируют подсветку. При подаче напряжения определенного уровня можно добиться практически любого оттенка серого.

3LCD-технология

Представляет собой систему видеопроекции, в которой для создания изображения используются 3 микродисплейные панели. В 1995 г. благодаря компактности и высокому качеству технология начала применяться многими производителями фронтальных проекторов, а с 2002 г. - и в Активная матрица обеспечивает отличную цветопередачу, высокую яркость и четкое изображение, а использование высокотемпературного поликремния позволяет получить большую глубину черного.

IPS-технология

Аббревиатура IPS расшифровывается как «плоскостное переключение». Принцип работы ЖК-монитора данного типа основан на выравнивании жидкокристаллических ячеек в горизонтальной плоскости. Метод заключается в том, что электрическое поле проходит через оба конца кристалла, но требует двух транзисторов на каждый пиксель вместо одного, как в стандартном TFT-экране. Следствием этого является большая блокировка участка дисплея, что требует более яркой подсветки, которая расходует больше энергии. Это накладывает ограничения в использовании данного в ноутбуках.

Экраны нулевой мощности

Зенитальные элементы с двумя устойчивыми состояниями (ZBD), разработанные компанией QinetiQ, способны сохранять свою ориентацию без внешнего электрического поля. Принцип работы ЖК-монитора данного типа основан на том, что кристаллы могут находиться в одном из двух положений - «черном» или «белом». Питание требуется лишь для изменения состояния ЖК-элемента на противоположное. Созданные на основе данной технологии экраны производит компания ZBD Displays. Она предлагает как черно-белые, так и цветные ZBD-дисплеи.

Французская компания Nemoptic разработала еще одну технологию, не требующую питания для сохранения изображения. Похожие на бумагу ЖК-экраны производятся на Тайване с июля 2003 года. Данная технология ориентирована на такие маломощные мобильные устройства, как переносные компьютеры и электронные книги. ЖКД с нулевой мощностью потребления составляют конкуренцию электронной бумаге.

Компания Kent Displays тоже разработала экран с нулевым энергопотреблением, в котором используются стабилизированные полимерные жидкие кристаллы ChLCD. Основным недостатком этой технологии является невысокая частота обновления, которая еще больше замедляется при низких температурах.

Контроль качества

ЖК-экраны могут иметь дефектные транзисторы, результатом чего являются постоянно открытые или закрытые участки, на которых пиксели остаются либо ярко освещенными, либо черными. Если в случае интегральных схем это бы означало брак, то дисплеи с несколькими неработающими точками, как правило, используются. Это невозможно запретить по экономическим соображениям, поскольку ЖК-панели значительно больше микросхем. Для определения максимально допустимого числа дефектных пикселей производители используют разные стандарты. Например, в ноутбуках ThinkPad для панели разрешением 2048 х 1536 оно равно 16. Из них яркими могут быть 15 пикселей, а темными - 16.

Дефект ЖК-экрана более вероятен, чем для большинства микросхем. Например, 12” SVGA-дисплей может иметь 8 дефектов, а 6” пластина - только 3. Вместе с тем из 137 штампов приемлемыми будут 134 при практически нулевом браке ЖКД. Стандарты качества сегодня намного выше, чем раньше, благодаря жесткой конкуренции между производителями и улучшенному контролю. SVGA-экран с 4 дефектными пикселями теперь считается дефектным, и клиенты имеют возможность обменять его на новый.

100% гарантия

Ряд производителей, особенно южнокорейских, поскольку там находятся одни из крупнейших фабрик по производству ЖК-панелей (например, LG), сегодня гарантируют отсутствие неисправных пикселей и производят замену экрана даже с единственным дефектом. Даже если такая гарантия не предоставляется, важно расположение дефектных участков. Экраны с несколькими неисправными ячейками могут быть непригодны, если они расположены рядом друг c другом. Кроме того, производители могут произвести замену панели в том случае, если дефект расположен в центре дисплея.

Диагностика и ремонт мониторов

Ниже приведены наиболее часто встречающиеся неисправности и методы их устранения.

Индикатор питания горит постоянно, но изображение отсутствует. Вероятна поломка подсветки или ее инвертора. Простейший способ диагностики ЖК-монитора - включить воспроизведение видео и направить яркий луч либо почти параллельно экрану, либо перпендикулярно. Это позволит увидеть изображение даже без подсветки. Ремонт монитора заключается в замене лампы подсветки или, скорее всего, ее инвертора.

Индикатор питания мигает. В этом случае необходимо проверить, поступает ли в дисплей сигнал - вероятно повреждение кабеля либо разъема. Если все в порядке, то основную причину неисправности для конкретной марки монитора следует поискать в интернете. Например, для Dell 1702FP - это выход из строя некоторых конденсаторов. Простейший выход в этом случае - заменить все емкости. Также можно шунтировать неисправный конденсатор заведомо исправным.

Индикатор питания не загорается. Вероятная причина - поломка блока питания монитора. Можно попробовать его заменить, купив новый или воспользовавшись запчастями от старого дисплея. Другая возможная причина - КЗ конденсатора (его легко найти визуально) и перегорание предохранителя. В этом случае их следует заменить.

Вертикальные или горизонтальные линии. Если монитор работает, но имеет линии, простирающиеся на всю ширину или высоту экрана или раздваивание изображения по вертикали или горизонтали, то вероятным виновником является транзистор или соединение дисплея. Если один из сотен разъемов неисправен или закорочен, то это сказывается на всем ряду пикселей. Для ноутбуков иногда достаточно сжать проблемный участок и проблема уйдет на годы. Для дисплея ПК потребуется снять заднюю панель, чтобы добраться до неисправного соединения и приложить к нему давление.

Особенности ухода

Иногда качество изображения можно восстановить с помощью простой салфетки для ЖК-мониторов. Она устранит пыль, пятна от еды, отпечатки пальцев, следы насекомых, грязь и разводы.

Лучше использовать профессиональные средства, такие как чистящие спреи и пены-аэрозоли, но их можно заменить разведенным в равных пропорциях изопропиловым спиртом или уксусом.

Не следует использовать средства на основе спирта, аммиака или ацетона, поскольку они способны нанести вред экрану, особенно антибликовому покрытию.

Чистящее средство следует наносить на салфетку, а не на загрязнение.

Протирая дисплей, нельзя применять силу.

Нельзя включать монитор до полного его высыхания.

Недостатки

ЖК-технология по-прежнему отличается некоторыми недостатками в сравнении с другими подходами:

  • Если электро-лучевые трубки могут работать с разным разрешением, не привнося искажений, ЖКД обеспечивают четкость только в случае их «родного разрешения». При попытке установить неподдерживаемые параметры экрана, изображение масштабируется, становится размытым или «блочным».
  • ЖК-панели обеспечивают более низкую контрастность, чем плазменные или светодиодные. Причиной этого является то, что свет часто проникает через поляризационный фильтр и вместо черного цвета отображается серый. Однако при ярком внешнем освещении контрастность ЖКД может превышать данный показатель некоторых других дисплеев по причине большей максимальной яркости.
  • ЖК-экраны отличаются большим временем отклика, чем плазменные аналоги, создавая видимые ореолы при быстром движении изображения, хотя этот показатель по мере развития технологии постоянно улучшается и в современных ЖК-панелях практически незаметен. Большинство TN- и IPS-дисплеев имеют время отклика 5-8 мс.
  • Овердрайв, применяемый в некоторых панелях, приводит к тому, что на участках изменяющегося изображения возникают артефакты в виде повышенного шума или ореолов. Причиной этого побочного эффекта является стремление пикселей достичь предполагаемой яркости (или напряжения, которое требуется для прохождения нужного количества света), после чего они возвращаются к целевому уровню, обеспечивая лучшее время отклика.
  • ЖК-дисплеи отличаются ограниченными углами обзора, из-за чего одновременно смотреть на экран может меньшее число зрителей. При достижении предельного угла контрастность и цветопередача ухудшаются. Но некоторые производители используют этот эффект, предлагая намеренно ограниченный обзор ЖК-монитора с целью обеспечения большей конфиденциальности, например, при пользовании ноутбуком в общественных местах. Кроме того, это позволяет создать для одного наблюдателя 2 различных изображения, создавая стереоскопический эффект.
  • Некоторые старые ЖК-мониторы могут вызвать мигрени и проблемами со зрением по причине мерцания ламп подсветки, работающих с частотой сети 50 Гц. В современных экранах это устранено с переходом на питание высокочастотным током.
  • ЖК-дисплеи иногда страдают от выгорания. По мере развития технологии данная проблема снижается, поскольку появляются новые методы ее устранения. Иногда экран можно восстановить путем длительного отображения белого изображения.
  • Некоторые ЖКД не способны работать в режиме низкого разрешения (например, 320 х 200). Но это связано со схемой управления, а не особенностями ЖК-монитора.
  • Плоские дисплеи очень уязвимы. Но их легкий вес снижает вероятность повреждения, а некоторые модели защищены стеклом.

Эмулируется мерцанием с дизерингом [ ] .

Технические характеристики

Важнейшие характеристики ЖК-дисплеев:

  • тип матрицы - определяется технологией, по которой изготовлен ЖК-дисплей;
  • класс матрицы; стандарт ISO 13406-2 выделяет четыре класса матриц по допустимому количеству «битых пикселей »;
  • разрешение - горизонтальный и вертикальный размеры, выраженные в пикселях . В отличие от ЭЛТ -мониторов, ЖК-дисплеи имеют одно фиксированное разрешение, а поддержка остальные реализуется путём интерполяции (ЭЛТ-мониторы также имеют фиксированное количество пикселей, которые также состоят из красных, зеленых и синих точек, однако из-за особенностей технологии при выводе нестандартного разрешения в интерполяции нет необходимости);
  • размер точки (размер пикселя) - расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением;
  • соотношение сторон экрана (пропорциональный формат) - отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.);
  • видимая диагональ - размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: при одинаковой диагонали, монитор формата 4:3 имеет большую площадь, чем монитор формата 16:9;
  • контрастность - отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению;
  • яркость - количество света, излучаемое дисплеем (обычно измеряется в канделах на квадратный метр);
  • время отклика - минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:
    • время буферизации (input lag ). Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20-50 ; в отдельных ранних моделях достигало 200 мс ;
    • время переключения. Указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас (2016) практически во всех мониторах заявленное время переключения составляет 1-6 мс ;
  • угол обзора - угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в технических параметрах своих мониторов углы обзора, такие, к примеру, как: CR 5:1 - 176/176°, CR 10:1 - 170/160°. Аббревиатура CR (англ. contrast ratio ) обозначает уровень контрастности при указанных углах обзора относительно контрастности при взгляде перпендикулярно экрану. В приведённом примере, при углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже, чем 10:1, при углах обзора 176°/176° - не ниже, чем до значения 5:1.

Устройство

Конструктивно дисплей состоит из следующих элементов:

  • ЖК-матрицы (первоначально - плоский пакет стеклянных пластин, между слоями которого и располагаются жидкие кристаллы; в 2000-е годы начали применяться гибкие материалы на основе полимеров);
  • источников света для подсветки ;
  • контактного жгута (проводов);
  • корпуса, чаще пластикового , с металлической рамкой для придания жёсткости.

Состав пикселя ЖК-матрицы:

  • два прозрачных электрода ;
  • слой молекул, расположенный между электродами;
  • два поляризационных фильтра , плоскости поляризации которых (как правило) перпендикулярны.

Если бы жидких кристаллов между фильтрами не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной.

Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности.

Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности).

Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам.

Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения, это также стабилизирует свойства полученного изображения.

Малогабаритные ЖК-дисплеи без активной подсветки, применяемые в электронных часах, калькуляторах и т. п., обладают чрезвычайно низким энергопотреблением , что обеспечивает длительную (до нескольких лет) автономную работу таких устройств без замены гальванических элементов.

С другой стороны, ЖК-мониторы имеют и множество недостатков, часто принципиально трудноустранимых, например:

  • в отличие от ЭЛТ , могут отображать чёткое изображение лишь при одном («штатном») разрешении. Остальные достигаются интерполяцией ;
  • по сравнению с ЭЛТ, ЖК-мониторы имеют малый контраст и глубину чёрного цвета . Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения;
  • из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ;
  • фактическая скорость смены изображения также остаётся заметно ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично;
  • зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии. В ЭЛТ-дисплеях эта проблема полностью отсутствует;
  • массово производимые ЖК-мониторы плохо защищены от механических повреждений. Особенно чувствительна матрица, не защищённая стеклом. При сильном нажатии возможна необратимая деградация;
  • существует проблема дефектных пикселей . Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих. Мониторы с ЭЛТ этой проблеме не подвержены;
  • пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев , вообще не подверженных ей.
  • не очень большой диапазон рабочих температур: происходит ухудшение динамических характеристик (и далее неработоспособность) при даже небольших отрицательных температурах окружающей среды.
  • матрицы довольно хрупкие, а их замена весьма дорогостоящая

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи (матрица с органическими светодиодами), однако она встретила много сложностей в массовом производстве, особенно для матриц с большой диагональю.

Технологии

Основные технологии при изготовлении ЖК-дисплеев: TN+film, IPS (SFT, PLS) и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённого в конкретных разработках.

Время отклика ЖК-мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс .

В настоящее время [когда? ] в России только два предприятия (московский МЭЛТ и саратовское НПП «Дисплей») разрабатывают и производят ЖК-дисплеи по технологиям TN и STN [ ] .

TN+film

TN + film (Twisted Nematic + film) - самая простая технология. Слово «film» в названии технологии означает «дополнительный слой», применяемый для увеличения угла обзора (ориентировочно - от 90 до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. Способа улучшения контрастности и углов обзора для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И поскольку направление поляризации фильтра на второй пластине составляет как раз угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое малое время отклика среди современных матриц [когда? ] , а также невысокую себестоимость. Недостатки: худшая цветопередача, наименьшие углы обзора.

IPS

AS-IPS (Advanced Super IPS - расширенная супер-IPS) - также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например, NEC LCD20WGX2), созданных по технологии S-IPS, разработанной консорциумом LG Display.

H-IPS A-TW (Horizontal IPS with Advanced True White Polarizer ) - разработана LG Display для корпорации NEC . Представляет собой H-IPS панель с цветовым фильтром TW (True White - «настоящий белый») для придания белому цвету большей реалистичности и увеличения углов обзора без искажения изображения (исключается эффект свечения ЖК-панелей под углом - так называемый «глоу-эффект»). Этот тип панелей используется при создании профессиональных мониторов высокого качества .

AFFS (Advanced Fringe Field Switching , неофициальное название - S-IPS Pro) - дальнейшее улучшение IPS, разработана компанией BOE Hydis в 2003 году. Увеличенная напряжённость электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

Развитие технологии «super fine TFT» от NEC
Название Краткое обозначение Год Преимущество Примечания
Super fine TFT SFT 1996 Широкие углы обзора, глубокий чёрный цвет . При улучшении цветопередачи яркость стала немного ниже.
Advanced SFT A-SFT 1998 Лучшее время отклика Технология эволюционировала до A-SFT (Advanced SFT, Nec Technologies Ltd. в 1998), значительно уменьшив время отклика.
Super-advanced SFT SA-SFT 2002 Высокая прозрачность SA-SFT, разработанная Nec Technologies Ltd. в 2002, позволила улучшить прозрачность в 1,4 раза по сравнению с A-SFT.
Ultra-advanced SFT UA-SFT 2004 Высокая прозрачность
Цветопередача
Высокая контрастность
Позволила достичь в 1,2 раза большей прозрачности по сравнению с SA-SFT, 70 % охвата цветового диапазона NTSC и увеличения контрастности.
Развитие технологии IPS фирмой Hitachi
Название Краткое обозначение Год Преимущество Прозрачность/
Контрастность
Примечания
Super TFT IPS 1996 Широкие углы обзора 100/100
Базовый уровень
Большинство панелей также поддерживают реалистичную цветопередачу (8 бит на канал) . Эти улучшения появились ценой более медленного времени отклика, изначально около 50 мс. IPS панели также были очень дороги.
Super-IPS S-IPS 1998 Отсутствует цветовой сдвиг 100/137 IPS был вытеснен S-IPS (Super-IPS, Hitachi Ltd. в 1998), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика
Advanced super-IPS AS-IPS 2002 Высокая прозрачность 130/250 AS-IPS, также разработанный Hitachi Ltd. в 2002, повышает, главным образом, контрастность традиционных S-IPS панелей до уровня, при котором они стали вторыми после некоторых S-PVA.
IPS-provectus IPS-Pro 2004 Высокая контрастность 137/313 Технология панелей IPS Alpha с более широкой цветовой гаммой и контрастностью, сравнимой с контрастностью PVA и ASV дисплеев без углового свечения.
IPS alpha IPS-Pro 2008 Высокая контрастность Следующее поколение IPS-Pro
IPS alpha next gen IPS-Pro 2010 Высокая контрастность Hitachi передает технологию Panasonic
Развитие технологии IPS фирмой LG
Название Краткое обозначение Год Примечания
Super-IPS S-IPS 2001 LG Display остается одним из главных производителей панелей, основанных на технологии Hitachi Super-IPS.
Advanced super-IPS AS-IPS 2005 Улучшена контрастность с расширенной цветовой гаммой.
Horizontal IPS H-IPS 2007 Достигнута ещё большая контрастность и визуальная более однородная поверхность экрана. Также дополнительно появилась технология Advanced True Wide Polarizer на основе поляризационной плёнки NEC, для достижения более широких углов обзора, исключения засветки при взгляде под углом. Используется в профессиональной работе с графикой.
Enhanced IPS e-IPS 2009 Имеет более широкую апертуру для увеличения светопроницаемости при полностью открытых пикселях, что позволяет использовать более дешевые в производстве лампы подсветки, с более низким энергопотреблением. Улучшен диагональный угол обзора, время отклика уменьшено до 5 мс.
Professional IPS P-IPS 2010 Обеспечивает 1,07 млрд цветов (30-битная глубина цвета). Больше возможных ориентаций для субпикселя (1024 против 256) и лучшая глубина true color-цветопередачи.
Advanced high performance IPS AH-IPS 2011 Улучшена цветопередача, увеличено разрешение и PPI , повышена яркость и понижено энергопотребление .

MVA

Технология VA (сокр. от vertical alignment - вертикальное выравнивание) была представлена в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Наследницей технологии VA стала технология MVA (multi-domain vertical alignment ), разработанная компанией Fujitsu как компромисс между TN- и IPS-технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом, благодаря использованию технологий ускорения (RTC), эти матрицы не сильно отстают от TN+Film по времени отклика. Они значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

Достоинствами технологии MVA являются глубокий чёрный цвет (при перпендикулярном взгляде) и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля . Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

  • PVA (patterned vertical alignment ) от Samsung;
  • Super PVA от Sony-Samsung (S-LCD);
  • Super MVA от CMO;
  • ASV (advanced super view ), также называется ASVA (axially symmetric vertical alignment ) от Sharp.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским свойствам.

PLS

PLS-матрица (plane-to-line switching ) была разработана компанией Samsung как альтернатива IPS и впервые продемонстрирована в декабре 2010 года. Предполагается, что эта матрица будет на 15 % дешевле, чем IPS .

Достоинства:

  • плотность пикселей выше по сравнению с IPS (и аналогична с *VA/TN) [ ] ;
  • высокая яркость и хорошая цветопередача [ ] ;
  • большие углы обзора [ ] ;
  • полное покрытие диапазона sRGB [ ] ;
  • низкое энергопотребление, сравнимое с TN [ ] .

Недостатки:

  • время отклика (5-10 мс) сравнимо с S-IPS, лучше чем у *VA, но хуже чем у TN.

PLS и IPS

Компания Samsung не давала описания технологии PLS . Сделанные независимыми наблюдателями сравнительные исследования матриц IPS и PLS под микроскопом не выявили отличий . То, что PLS является разновидностью IPS, косвенно признала сама корпорация Samsung своим иском против корпорации LG: в иске утверждалось, что используемая LG технология AH-IPS является модификацией технологии PLS .

Подсветка

Сами по себе жидкие кристаллы не светятся. Чтобы изображение на жидкокристаллическом дисплее было видимым, нужен . Источник может быть внешним (например, Солнце), либо встроенным (подсветка). Обычно лампы встроенной подсветки располагаются позади слоя жидких кристаллов и просвечивают его насквозь (хотя встречается и боковая подсветка, например, в часах).

Внешнее освещение

Монохромные дисплеи наручных часов и мобильных телефонов большую часть времени используют внешнее освещение (от Солнца, ламп комнатного освещения и так далее). Обычно позади слоя пикселей из жидких кристаллов находится зеркальный или матовый отражающий слой. Для использования в темноте такие дисплеи снабжаются боковой подсветкой. Существуют также трансфлективные дисплеи , в которых отражающий (зеркальный) слой является полупрозрачным, а лампы подсветки располагаются позади него.

Подсветка лампами накаливания

В прошлом в некоторых наручных часах с монохромным ЖК-дисплеем использовалась сверхминиатюрная лампа накаливания . Но из-за высокого энергопотребления лампы накаливания являются невыгодными. Кроме того, они не подходят для использования, например, в телевизорах, так как выделяют много тепла (перегрев вреден для жидких кристаллов) и часто перегорают.

Электролюминесцентная панель

Монохромные ЖК-дисплеи некоторых часов и приборных индикаторов используют для подсветки электролюминесцентную панель. Эта панель представляет собой тонкий слой кристаллофосфора (например, сульфида цинка), в котором происходит электролюминесценция - свечение под действием тока. Обычно светится зеленовато-голубым или жёлто-оранжевым светом.

Подсветка газоразрядными («плазменными») лампами

В течение первого десятилетия XXI века подавляющее большинство LCD-дисплеев имело подсветку из одной или нескольких

Рекомендуем почитать

Наверх