Двухканальный термометр на микроконтроллере ATmega8 и датчиках DS18B20. Электронный термометр с беспроводным датчиком Двухканальный термометр на микроконтроллере с памятью

Мультимедиа 01.11.2023
Мультимедиа

Перед вами проект двухканального термометра. Он может измерять температуру в диапазоне от -50.0 до +99.9 градусов. Устройство было разработано для измерения температуры в доме и на улице, но ему также можно найти и множество других применений. При небольшом изменении программы устройство также можно использовать в качестве термостата. Термометр построен на популярном и очень широко распространенном датчике и микроконтроллере ATtiny2313, что значительно упростило разработку и позволило значительно уменьшить размеры. Термометр удалось сжать так, что почти все элементы расположены под трехразрядным дисплеем 15 мм. Практически все элементы SMD. Конечно, можно было бы применить TH компоненты, но в эпоху миниатюризации лучше сделать еще один шаг вперед по созданию системы с наименьшими размерами. Термометр может измерять температуру в двух местах, с помощью двух датчиков, подключенных на независимых шинах. Изменение отображаемой температуры осуществляется с помощью двух кнопок.

Принцип работы

Принципиальная схема:

Сердцем устройства является микроконтроллер U1 (ATTINY2313), который тактируется от внутреннего генератора 8MHz , без делителя частоты. Отсутствие кварца позволило уменьшить размеры устройства, а также освободило две ножки МК, к одной из них сейчас подключена кнопка S2. Микроконтроллер получает показания температуры с двух датчиков, преобразовывает данные в форму, пригодную для отображения на дисплее и обрабатывает нажатия кнопок S1 и S2. Конденсатор С1 (100nF), расположенный рядом с микроконтроллером - фильтрующий. Конденсаторы С2 (10 мкФ) и С3 (10 мкФ) необходимы для правильной работы U3 (78L05).Простота схемы обусловлена используемым датчиком температуры. Это 12-битный цифровой термометр, который может работать в диапазоне от -55 до +125 градусов. Время обработки (преобразования) температуры длится не дольше, чем 750 мс. Связь с микроконтроллером осуществляется по интерфейсу 1-Wire. В качестве индикатора температуры используется трехзначный светодиодный дисплей (AT5636BMR-В) с внутренними соединениями сегментов, адаптированный для динамической индикации. Резисторы R4-R11 ограничивают ток на светодиодном дисплее до 10-12 мА (на сегмент). Тем не менее, средний ток меньше из-за использования динамической индикации. Управление анодами осуществляется тремя популярными транзисторами Т1 - Т3 (BC857). Токи базы ограничены резисторами R1-R3 (3,3 кОм). Важным компонентом является разъем GP1, через который подключаются датчики и управляющий выход (в случае термостата).

Изготовление

Устройство изготовлено на основе печатной платы. Плата односторонняя, и почти все элементы SMD. Исключением является дисплей, кнопки управления и разъемы. Сборка не сложная, но требует большого мастерства при пайке SMD. Недостатком платы является отсутствие разъема для программирования, так что если придется вносить изменения в программу вам необходимо будет припаять провода программатора к плате напрямую. Но можно установить на плате миниатюрный разъем.

Распиновка разъема

Выводы 1 и 2 этого разъема это питание и заземление. Вывод 3 предназначен для подключения индикации отрицательных температур (Катодом на разъем, анодом на +5В через резистор 200 - 300 Ом). Датчики подключаются через трехжильный провод. Первый датчик подключается к выводу 5, а второй датчик к выводу 6. Устройство питается от 7-12В через стабилизатор 78L05.

Программирование

Программа написана в известной среде программирования . Она занимает около 70% памяти микроконтроллера и может быть успешно скомпилирована в демо версии BASCOM"a. Программа не сложная. Далее представлены некоторые элементы кода

Обработчик прерывания Timer0 :

Przerwanie0: Timer0 = 131 Set F4ms Incr Dziel(1) If Dziel(1) = 25 Then Dziel(1) = 0 Set F100ms Incr Dziel(2) If Dziel(2) = 10 Then Dziel(2) = 0 Set F1s End If End If Return

Основной цикл:

Do If F4ms = 1 Then Reset F4ms "co 4ms Wysw = T Gosub Wyswietl_zmierz End If If F100ms = 1 Then Reset F100ms "co 100ms If Pind.2 = 0 Then Kanal = 1 If Pina.0 = 0 Then Kanal = 0 End If Loop End

Процедура управления дисплеем:

Wyswietl_zmierz: Incr Mux If Mux = 5 Then Mux = 0 Portd.3 = Not Minus For I = 1 To 3 Wysw_pomoc = Wysw Mod 10 Ww = Wysw_pomoc W(i) = Lookup(ww , Tabela) Wysw = Wysw / 10 Next I If W(3) = 40 Then W(3) = 255 "wygaszenie zera wiodącego Select Case Mux Case 0: Portb = W(3) Reset Portd.6 Case 1: Set Portd.6 Portb = W(2) And &B11011111 Reset Portd.5 Case 2: Set Portd.5 Portb = W(1) Reset Portd.4 Case 3: Set Portd.4 Portb = 255 Gosub Temp "Case 4: End Select Return Tabela: Data 40 , 235 , 50 , 162 , 225 , 164 , 36 , 234 , 32 , 160

Процедура измерения температуры:

Temp: If F1s = 1 Then Reset F1s 1wreset Pind , Kanal 1wwrite &HCC , 1 , Pind , Kanal 1wwrite &HBE , 1 , Pind , Kanal T = 1wread(2 , Pind , Kanal): Minus = T.15 T = Abs(t) T = T * 10 T = T / 16 1wreset Pind , Kanal 1wwrite &HCC , 1 , Pind , Kanal 1wwrite &H44 , 1 , Pind , Kanal End If Return

Fusebits микроконтроллера должны быть установлены для работы с внутренним RC-генератором с частотой 8 МГц

Фотографии

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 МК AVR 8-бит

ATtiny2313

1 SO20 В блокнот
U3 Линейный регулятор

L78L05

1 SOT89 В блокнот
T1-T3 Биполярный транзистор

BC857

3 В блокнот
C1 Конденсатор 100 нФ 1 В блокнот
C2, C3 Электролитический конденсатор 10 мкФ 2 Танталовый SMD 3216A В блокнот
R1-R3 Резистор

3.3 кОм

3 SMD 0805 В блокнот
R4-R11 Резистор

330 Ом

8 SMD 0805 В блокнот
R12, R13 Резистор

4.7 кОм

2 SMD 0805 В блокнот
W1 Семисегментный индикатор AT5636BMR 1

В строительстве с измерением температуры мы сталкиваемся постоянно: температуру нужно контролировать при обжиге клинкера в процессе производства цемента, соблюдение температурных режимов важно при пропарке бетона и монолитном бетонировании, не обеспечив тепловой контроль невозможно правильно приготовить асфальтобетонную смесь, при проведении испытаний бетонов на морозостойкость также важно выдержать температурный режим. Для решения каждой из этих задач нужны разные термометры: на различные диапазоны температур, с разными датчиками (температуры среды, температуры поверхности), одноканальный термометр, двухканальный термометр, многоканальный термометр, с режимом регистрации и без него.

Любая строительная задача, связанная с тепловым контролем, может быть решена при помощи приборов компании «Интерприбор». Это возможно благодаря широкой номенклатуре подключаемых к приборам датчиков. Включение того или иного датчика в комплектацию прибора теплового контроля позволит покупателю приобрести прибор, предназначенный для конкретных целей.

Виды датчиков температуры

Среди датчиков для приборов контроля температуры выделяют:

  • Серию датчиков температуры поверхности: ТЗ-П и ТЗ-ПО. Датчик ТЗ-П разработан для измерения температур криволинейных поверхностей. Его отличает высокое быстродействие за счёт исполнения на ХК-термопаре при относительной погрешности ±2,0%. Конструкция датчика ТЗ-ПО обеспечивает точность ±0,5% (в диапазоне температур –50…+100 С) при измерении температуры поверхности тел с относительно низкой теплопроводностью (стекло, бетон и т.д.). ТЗ-ПО выполнен на основе малоинерционного платинового элемента Pt1000.
  • Датчики температуры среды также имеют несколько исполнений: ТЗ-С, ДТС-1.0 и ДТС-1.4 . Датчик ТЗ-С выполнен на ХК-термопаре, его отличительной особенностью является повышенное быстродействие и широкий диапазон измеряемых температур при точности измерения ±1,0%. Датчики ДТС-1.0 и 1.4 это цифровые датчики температуры с повышенной точностью измерения ±0,5% в узком диапазоне температур –10…+85 С и диапазоном –55…+125 С при точности ±2,0%. Датчик ДТС-1.4 отличает более высокое быстродействие за счёт особенностей конструкции.

Показания датчиков выводятся на HG1 - трехразрядный светодиодный индикатор с общими анодами светодиодов каждого разряда. Двухцветные светодиоды HL1 и HL2 отображают состояние каждого из каналов.

Сигналы управления нагревателями в режиме термостата формируются на выходах микроконтроллера РВ6 (первый канал) и РВ7 (второй канал). Управление двухпозиционное: нагреватель включен или выключен. Для гальванической развязки прибора от исполнительных устройств установлены оптроны U1 и U2. В моем варианте к разъемам Х4 и Х5 подключены цепи управления двух симисторов ВТ139, коммутирующих нагревательные элементы. При необходимости оптроны можно заменить транзисторами, включив в их коллекторные цепи обмотки электромагнитных реле.

В течение 4...5 с после подачи на прибор питания происходит инициализация датчиков и начальный сбор их показаний. В это время поочередно мигают все элементы индикатора HG1. Далее устанавливается режим измерения и отображения температуры. В этом режиме нагреватели выключены.

Показания датчиков на индикаторе чередуются с периодом 5 с. Если температура измерена датчиком, подключенным к разъему Х1, светится светодиод HL1, а подключенным к разъему Х2 - HL2. При этом, если соответствующий канал сконфигурирован как термометр, цвет свечения желтый, если как термостат, то при поданной команде на включение нагревателя он красный, а при ее отсутствии - зеленый.

После нажатия на кнопку SB2 отображаются показания только первого датчика, а после нажатия на SB3 -только второго. Если какой-либо датчик не подключен, в его цепи произошел обрыв, замыкание или температура вышла за пределы 0,1...99,9 °С, на индикатор вместо значения температуры выводится надпись "Err", а соответствующий нагреватель выключается.

Если во время отображения температуры, измеренной, например, первым датчиком, несколько раз нажимать на кнопку SB2, то с каждым нажатием соответствующий канал будет переходить из режима термостата в режим термометра и обратно.

При кратковременном нажатии на кнопку SB1 восстанавливается режим поочередного отображения температуры в двух каналах. Но если удерживать кнопку SB1 нажатой длительное время, термометр-термостат войдет в режим настройки того канала, во время отображения температуры которого была нажата кнопка.

В этом режиме кнопками SB2 и SB3 выбирают необходимый параметр:

ut1 (ut2) - установка температуры выключения нагревателя в канале 1 (2);
dt1 (dt2) - установка разности температуры(гистерезиса) выключения и включения нагревателя в канале 1 (2).

Например, при установке температуры выключения водонагревателя 35°С и разности 1,5 °С нагревание произойдет до температуры 35 °С, по ее достижении нагреватель будет выключен и вновь включен, когда температура понизится до 33,5 °С. Оптимальным выбором разности достигают компромисса между точностью поддержания температуры и частотой включений нагревателя.

со1 (со2) - корректировка показаний датчика 1 (2). Введенное значение суммируется (с учетом знака) с этими показаниями прежде, чем они поступят на дальнейшую обработку. Это позволяет скомпенсировать возможную погрешность датчика.

В случае повторного кратковременного нажатия на кнопку SB1 на индикатор выводится хранящееся в памяти микроконтроллера значение выбранного параметра, после чего кнопками SB2 и SB3 (соответственно уменьшение и увеличение на 0,1 °С) задают его новое значение. При длительном удержании этих кнопок изменение параметра начинает происходить быстрее (приблизительно 10 раз в секунду). Через 5с после последнего нажатия на любую кнопку установленное значение запоминается в энергонезависимой памяти микроконтроллера, а на индикатор выводится текущая температура.

Коды программы из файла Termo2ch.hex записывают в программную (FLASH) память микроконтроллера, а информацию из файла Termo2ch.epp - в его EEPROM. Разряды конфигурации микроконтроллера программируют в соответствии с таблицей:

Для защиты от зависания программы в микроконтроллере должен быть включен сторожевой таймер.

Поскольку интерфейс 1-Wire, используемый датчиками, критичен к тактовой частоте микроконтроллера, необходима точная настройка его внутреннего тактового генератора на 8 МГц. Для этого следует, подключив используемый экземпляр микроконтроллера к программатору, прочитать калибровочную константу, находящуюся в старшем байте слова, расположенного по адресу 0x0003 сигнатуры микроконтроллера. После загрузки в программатор файла Termo2ch.epp, но перед программированием, эту константу записывают в нулевую ячейку буфера EEPROM программатора.

Микроконтроллер АТmega8 может быть заменен на ATmega8L. При замене индикатора CPD-05211SR2/A аналогичным другого типа придется, возможно, подобрать резисторы R8-R15, чтобы обеспечить приемлемую яркость.

Тип оборудования: Термометр, прибор теплового контроля, анализатор температуры.

Производитель: Россия

Серия: ТК-5

Модель: ТК-5.11

Описание: Прибор для измерения температуры и относительной влажности.

Гарантия на термометр контактный ТК-5.11: 24 мес.

Термометр контактный ТК-5.11 внесен в Госреестр средств измерений.

Назначение прибора:

Термометр контактный цифровой ТК-5.11 предназначен для измерения температуры различных сред, относительной влажности воздуха путем непосредственного контакта зонда с объектом измерения. Термометр является двухканальным прибором, предусматривающим работу одновременно двумя измерительными зондами. Состоят из электронного блока и сменных зондов. В качестве термочувствительных элементов в зондах используются преобразователи термоэлектрические (ТП) с НСХ по ГОСТ Р 8.585 . А в качестве измерительного элемента в зондах относительной влажности используются емкостные датчики влажности.

Функциональные возможности темометра ТК-5.11:

  • измерение одновременно влажности или температуры по двум каналам в любом сочетании одним прибором;
  • измерение температуры с разрешением 0.1 °С;
  • измерение влажности с разрешением 0,1%;
  • возможность смены зонда;
  • возможность вывода на экран температуры датчика термокомпенсации;
  • возможность вывода на экран температуры воздуха при использовании зонда влажности;
  • сохранение в памяти прибора измеренных значений температуры или влажности;
  • отображение среднего значения температуры или влажности за заданное количество измерений;
  • отображение максимального значения температуры или влажности (за заданное количество измерений);
  • отображение минимального значения температуры или влажности (за заданное количество измерений);
  • индикация напряжения питания;
  • задание граничных значений измеряемых температуры или влажности;
  • звуковая индикация при достижении заданных уровней измеряемых температур или влажности;
  • подсветка индикатора;
  • автоматическое отключение прибора через заданное время;
  • автоматическое сохранение при выключении текущего, усредненного, max, min, напряжения питания, остатка времени работы прибора на момент отключения.

Особенности термометра ТК-5.11:

  • Измерение влажности.
  • Одновременное измерение температуры и влажности.
  • Возможность работы со сменными зондами.
  • Двухканальный.
  • Питание от стандартных элементов питания типа АА.
  • Низкое энергопотребление (не менее 350 часов работы от одного комплекта батарей).

Технические характеристики термометра ТК-5.11:

Диапазон измеряемых температур, °С

100...+1800 (зависит от типа используемого зонда)

Относительная погрешность, %

±0,5 +ед.мл.разр

Цена единицы младшего разряда, °С

0,1

Количество типов сменных зондов

Диапазон измерения относительной влажности, %

3...97

Абсолютная погрешность измерения относительной влажности, %

Рабочие условия эксплуатации, °С

20...+50

Напряжение питания, В

1,5x2

Условия эксплуатации

температура окружающей среды, °С

20...+50

относительная влажность, %

не более 80 % при T = 35 °С

атмосферное давление, кПа

86 - 106

Область применения термометра ТК-5.01:

  • Теплоэнергетика и ПТО городского хозяйства. Энергоаудит помещений, температурный контроль качества коммунальных услуг, наладка тепловых режимов в котельных.
  • Промышленные предприятия. Контроль температуры деталей при сварочных работах, в металлургии, настройка температурных режимов при производстве строительных материалов и изделий из пластмассы, определение температуры форм в стекольной и кондитерской отраслях.
  • Пищевая промышленность. Температурный мониторинг техпроцессов варки, копчения, выпечки, производства дрожжей, солода и т.д.

Комплект поставки термометра ТК-5.01П:

  • термометр ТК-5.11
  • руководство по эксплуатации и паспорт
  • свидетельство о поверке
  • сумка-чехол

*Технические характеристики и комплект поставки приборов для контроля температуры могут быть изменены производителем без предварительного уведомления.

Дополнительную информацию по термометрам можно получить, обратившись к нашим специалистам, по телефонам, указанным разделе" контакты ".

Доставляем приборы для измерения температуры по всей России курьерскими службами и транспортными компаниями.

Двухканальный термометр на микроконтроллере ATmega8 и датчиках DS18B20

Характеристики термометра:
— 2 канала измерения текущей температуры, датчики подключены к разным разрядам порта микроконтроллера
— каждый канал позволяет измерять текущую температуру в интервале от +125 ºС до -55 ºС с разрешением до 0,1 ºС
— погрешность измерения температуры ±0,5 ºС
— обнаружение и индикация возможных ошибок в работе с датчиками температуры
— интервал измерения текущей температуры — 2 сек

Уважаемые читатели сайта!
Если вас интересует именно конструкция двухканального термометра, то могу посоветовать для прошивки микроконтроллера использовать прошивку для конструкции (здесь более оптимизированный и «причесанный» код)

Сегодня, в продолжении развития проекта на ATmega8 , мы рассмотрим конструкцию «Двухканальный термометр с датчиками температуры DS18B20 «.
Предложенная Вашему вниманию конструкция проста, содержит минимум деталей, не требует настройки.

(Хочу сразу предупредить, что время не стоит на месте и после публикации статьи программа термометров была доработана — в нее внесены три изменения: в работе задействован только один таймер Т0, повышена внутренняя тактовая частота микроконтроллера до 8 МГц, изменен алгоритм определения десятых температуры (теперь десятые не рассчитывается а принимают значение в зависимости от числа записанного в младший полубайт регистра LS-bite. Новая программа выложена ниже описанной в этой статье))

Индикация текущей температуры осуществляется на два трехразрядных семисегментных светодиодных индикатора, при этом:
— температура ниже +100 ºС — индикация осуществляется на трех разрядах с точностью до десятых
— температура выше +99,9 ºС — индикация осуществляется на трех разрядах с точностью до градуса
— температура выше -10 ºС — индикация осуществляется: первый разряд знак «-«, второй и третий разряд — единицы и десятки градусов
— температура ниже -9,9 ºС — индикация осуществляется: первый разряд знак «-«, второй и третий разряды — десятки и единицы градусов
— незначащие нули не выводятся
При возникновении возможных ошибок в работе с датчиками температуры на индикаторы выводится:
— нет высокого уровня на линии DQ датчика — «Er1»
— нет импульса присутствия от датчика — «Er2»
— после импульса присутствия линия DQ не вернулась в состоянии логической «1» — «Er3»
Индикация ошибок позволяет своевременно выявить и устранить неисправность.

Схема двухканального термометра на ATmega8 и датчиках DS18B20:


Детали, примененные в конструкции термометра

Микроконтроллер ATmega8-16PU с внутренней тактовой частотой — 4 мГц.
Индикаторы — трехразрядные семисегментные светодиодные индикаторы со схемой включения — «общий катод».
Транзисторы — «NPN»-структуры BC547 (транзисторы можно заменить на любые другие маломощные структуры NPN).
Постоянные сопротивления — любого типа, мощностью 0,25 Вт, близкие к номиналам указанным в схеме.
Датчики — датчики температуры DS18B20. Разрешающая способность установлена «по умолчанию» — 12 bit, что соответствует дискретности измерения температуры 0,0625 ºС.

Общение датчиков с микроконтроллером происходит по 1-Wire шине , что позволяет, в принципе, «посадить» датчики на одну линию. В представленной конструкции датчики подсоединены к разным разрядам порта «PB» (6 и 7 — соответственно) из трех соображений:
— при необходимости разноса датчиков в разных направлениях упрощается прокладка соединительных линий
— упрощается программа — не надо определять 64-битные коды датчиков, соответственно уменьшается время затрачиваемое на общение с датчиками (что немаловажно в данной конструкции при динамической индикации 6 разрядов индикаторов)
— и так остается незадействованным целый порт
Циклический контроль избыточности (CRC) не определяется — в данной конструкции проверять правильность передачи результатов конвертирования температуры датчиками я не вижу смысла.
При больших расстояниях между датчиками и основным блоком возможно потребуется подобрать подтягивающие сопротивления (от 1 до 5 кОм). Возможно лучше будет подсоединять эти сопротивления непосредственно к датчикам .

Питание конструкции осуществляется от стабилизированного источника напряжением 5 вольт. В качестве источника питания можно применить ненужное зарядное устройство от сотового телефона с выходным напряжением 5 вольт

Работа термометра

Программа двухканального термометра написана в среде «Algorithm Builder»


В программе задействовано два таймера микроконтроллера ATmega8 — Т0 и Т1 , которые настроены на вызов прерываний по переполнению счетчиков.
При включении устройства осуществляются предварительные настройки задействованных в работе портов микроконтроллера, занесение необходимых данных в переменные и разрешение прерываний, затем программа переходит в бесконечный цикл. В дальнейшем вся работа устройства осуществляется по перываниям от таймеров Т0 и Т1.
При этом:
При обработке прерывания от таймера Т0 осуществляется:
— динамическая индикация текущих значений температуры на светодиодных индикаторах
— поочередное считывание данных с датчиков температуры
— расчет и преобразование температуры для вывода на индикаторы
При обработке прерывания от таймера Т1 осуществляется
— поочередная подача команды на конвертирование температуры датчиками (с периодичностью — 1 сек)
Делители частоты таймеров при внутренней частоте микроконтроллера 4 мГц настроены:
— Т1 — СК/64 — вызов прерывания происходит почти через 1 секунду
— Т0 — настройка частоты делителя для таймера должна быть СК или СК/8 — 512mcs или 64mcs — не критично (но не менее 2ms). Это обусловлено тем, что время обработки прерывания от таймера Т1 равно времени которое затрачивает датчик на конвертирование температуры (по даташиту, при разрешающей способности 12bit, максимальное время конвертирования — 750ms, реально — намного быстрее)

Для более частого обновления текущей температуры можно настроить внутренний генератор микроконтроллера на частоту 8 мГц а делители частоты таймеров установить:
— T0 — СК/64 (периодичность вызова прерывания около 2ms)
— Т1 — СК/64 (периодичность вызова прерывания около 0,5sec)
что позволит обновлять текущую температуру с датчиков каждую секунду. Более частая подача команды на конвертирование температуры датчикам может привести к их нагреву, и, соответственно, к увеличению погрешности измерений.

Если вы «дружите» с программой «Algorithm Builder» то ее можно настроить для обновления текущей температуры непрерывно, сразу после конвертирования температуры датчиком. Для этого необходимо выполнить следующиу действия:
1. Отключить таймер Т1
2. Отключить подпрограмму обработки прерывания от таймера Т1 (можно и не отключать)
3. Включить кусок «серого кода» в «бесконечном цикле»
Возможно для предотвращения мерцания индикаторов тактовую частоту микроконтроллера придется увеличить до 8 мГц
4. Настроить делитель частоты таймера Т0 на периодичность прерывания не менее 2ms

Если индикаторы все же будут мерцать, попробуйте «поиграть» командами NOP в начале и в конце бесконечного цикла — добавьте или уберите. К примеру:


Часть кода программы отключена, она предназначена для уменьшения разрешающей способности датчиков. Для изменения разрешающей способности температурного преобразователя необходимо:
1. Включить часть кода на главной странице и подпрограмму изменения разрешающей способности на вкладке «DS18B20»:

2. Включить во вкладке «DS18B20» константы выделенные красным цветом:

Назначение констант:
— Read_Scratchpad — функциональная команда DS18B20 ($4E). Эта команда позволяет устройству управления записывать 3 байта данных в память DS18B20. Первый байт данных записывается в регистр (TH), второй байт записывается в регистр (TL), третий байт записывается в регистр конфигурации
— TH и TL — регистры Аварии верхнего и нижнего предела, константа b#01010101 — соответствует 85 ºС (как и установлено в датчиках по умолчанию)
bit11 — регистр конфигурации, запись константы b#01011111 изменит разрешение с 12 до 11 bit, что вдвое уменьшит время конвертирования температуры датчиками. Для 10-битного разрешения — b#00111111, для 9-битного разрешения — b#00011111
3. Изменить в подпрограмме расчета температуры на вкладке «DS18B20» число 625 на число дискретности измерения температуры для соответствующего разрешения (125, 25, 5) и числа 1000 и 999 соответственно (для 125 — 1000 и 999, для 25 — 100 и 99, для 5 — 10 и 9)

Если возникли вопросы, пишите, отвечу.

Приложения к статье:

(50,6 KiB, 26 984 hits)

Рекомендуем почитать

Наверх